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New World monkeys (NWMs) are characterized by an extensive
size range, with clawed NWMs (subfamily Callitrichinae, or cal-
litrichines) such as the common marmoset manifesting diminutive
size and unique reproductive adaptations. Perhaps the most
notable of these adaptations is their propensity toward multiple
gestations (i.e., dichorionic twins and trichorionic triplets). Indeed,
with the exception of Goeldi’s monkey (Callimico), callitrichine sin-
gleton pregnancies rarely occur. Multiple gestations seem to have
coevolved with a suite of reproductive adaptations, including
hematopoetic chimerism of siblings, suppression of reproduction
in nondominant females, and cooperative alloparenting. The se-
quencing of the common marmoset (Callithrix jacchus) genome
offers the opportunity to explore the genetic basis of these un-
usual traits within this primate lineage. In this study, we hypoth-
esized that genetic changes arising during callitrichine evolution
resulted in multiple ovulated ova with each cycle, and that these
changes triggered adaptations that minimized complications com-
mon to multiple gestations in other primates, including humans.
Callitrichine-specific nonsynonymous substitutions were identified
in GDF9, BMP15, BMP4, and WFIKKN1. WFIKKN1, a multidomain
protease inhibitor that binds growth factors and bone morphoge-
netic proteins, has nonsynonymous changes found exclusively in
common marmosets and other tested callitrichine species that
twin. In the one callitrichine species that does not produce twins
(Callimico), this change has reverted back to the ancestral (non-
twinning) primate sequence. Polymorphisms in GDF9 occur among
human cohorts with a propensity for dizygotic twins, and poly-
morphisms in GDF9 and BMP15 are associated with twinning in
sheep. We postulate that positive selection affected NWM growth
patterns, with callitrichine miniaturization coevolving with a series
of reproductive adaptations.

reproductive biology | primate evolution

Callitrichines (Callitrichinae), also referred to as clawed New
World monkeys (NWMs), are a subfamily of South and

Central American NWMs composed of marmosets (Callithrix,
Cebuella, Mico, and Callibella,), tamarins (Saguinus), lion tamarins
(Leontopithecus), and Goeldi’s monkey (Callimico), a monophyletic
genus most closely related to the marmosets (Fig. 1). The taxo-
nomic classification of Callitrichinae as a subfamily of Cebidae is
a revision (1) of the original classification of these genera in the
family Callitrichidae (callitrichids) (2). Although this revision is not
universally accepted, we use the Callitrichinae classification in this
paper. Callitrichines make up a distinctive primate lineage that is
characterized by unique reproductive adaptations and small body
size, ranging from 116 to 600 g based on species averages (3), with
some individual tamarins exceeding 600 g. The lineage also
displays other traits that are unusual in anthropoid primates and
that have previously been linked to the reduction in body size that
occurred in the callitrichine lineage (4). These traits include the

presence of claw-like nails associated with apical pads on all digits
except the hallux; the reduction or loss of the third molar, except
in Callimico; and dentition and gut specializations for tree gouging
and consuming tree exudates in marmosets. Callitrichines are
notable for their dependence on secondary growth, disturbed
forest or forest edges and can be grouped into a diverse diet type
that includes gums, fruits, and insects (5–7).
Although other anthropoid primates occasionally produce

twins and rarely higher-order litters, callitrichines are the only
anthropoid primates having an ‟obligate multiples phenotype”
resulting from ovulation of multiple ova per cycle (8, 9). Dichor-
ionic, dizygotic (DZ) twins comprise the predominant litter size in
the wild, although triplets have been reported (10), and twin,
triplet, and quadruplet litters are frequently reported in captive
colonies. The callitrichine species Callimico goeldii, which is most
closely related to the marmosets, is an exception in that they
produce singleton births. The production of singletons, along with
the presence of a third molar that is missing in the other calli-
trichines, contributed to an earlier view that Callimico was an-
cestral in the callitrichine lineage (1, 11). However, more recent
taxonomic classifications based upon DNA sequence place Calli-
mico as most closely related to marmosets of the genus Callithrix
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and not as an outlying or ancestral form (12–15). Given their
phylogenetic position within the callitrichine clade, this is con-
sidered to be a derived (reversed) phenotype arising from an an-
cestor that twinned (16) (Fig. 1). Callimico, therefore, provides an
interesting natural experiment from which the genetic basis of
twinning can be further explored (9).
Concomitant with the high fecundity of twinning callitrichines

are behavioral and physiologic adaptations suited to successful
rearing of multiple offspring. These include a cooperative social
organization of multiple males and females, in which generally
a single female is reproductively active and reproduction is sup-
pressed in nondominant females, either through behavioral sup-
pression or physiological suppression of ovulation (17, 18). In the
wild, adult males, nondominant females, and subadults share the
responsibility of caring for the offspring, whereas in captivity juve-
niles also care for younger siblings. Possibly the most remarkable
adaptation to twinning is their hematopoietic chimerism whereby
the DZ twins that share a placenta also share placental circulation
and exchange hematopoietic stem cells in a process that produces
adult callitrichines whose circulating leukocytes consist of a mixed

population of cells from all littermates. The reader is referred to
Ross et al. (19) and Sweeney et al. (20) for recent observations.
It has been proposed that production of multiple gestations in

twinning callitrichine primates is the result of selection pressures
stemming from their small body size. Originally thought to be an
ancestral trait (21), with characterization of the ancestral NWM
it is now evident that callitrichines underwent an evolutionary
reduction in body size (22). NWMs range in size from the pygmy
marmoset (0.116 kg) to the wooly spider monkey (9 kg) (23),
which is 78 times larger (3). This is a much wider size range than
seen in Old World monkeys, where the mandrill is 18 times
larger than the talapoin (3). Size evolution in NWMs is linked
with dietary diversification, and Marroig and Cheverud (24, 25)
propose that the dramatic differences in adult body size among
NWMs are the result of complex adaptations to different dietary
niches and diminished in utero growth velocity, and not a longer
gestational length per se (26). However, diminutive maternal size
in primates bears risk because it may result in fetal or maternal
demise or morbidity, such as that arising from passage of a rel-
atively large-brained infant through a small pelvic outlet (27).
Adaptations such as a capacity to condense growth velocity in the
fetal interval (akin to fetal growth restriction, but applied at
a species-wide level) or a predilection for multiple gestations
would successfully overcome such limitations. Similarly, it has
been suggested that selection favors multiple births owing to
factors such as increased predation of smaller animals (28), and
others have argued that cooperative breeding followed selection
for multiple gestations (29). Whereas most models of callitrichine
evolution proposed to date have suggested that miniaturization in
size preceded selection for increases in litter size, there has been
very little analysis of the genetic basis of either small callitrichine
body size, birth weight, or their pattern of obligate twinning to
either substantiate or refute this supposition.
The sequencing of the common marmoset (Callithrix jacchus)

genome offers the opportunity to explore the genetic basis of
these unusual traits within this primate lineage. We hypothesized
that genetic changes arising during callitrichine evolution resul-
ted in multiple ovulated ova with each cycle, and that this change
triggered a series of adaptations that minimized complications
common to multiple gestations in other primates, including humans.
We used the common marmoset genome to interrogate candidate
genes that may regulate multiple ovulations. Based on our find-
ings described herein, we propose a refined model of NWM,
notably callitrichine, evolution.

Results
We investigated 63 candidate genes chosen because previous
studies suggested a potential role for these loci in the number of
ova produced each cycle and/or control of growth and body size
(Table S1). Exons containing nonsynonymous substitutions
(NSs) with a potential effect on protein function were identified
based on marmoset alignments to other mammals (Fig. S1 and
Tables S2 and S3). Exon sequencing in callitrichine (n = 7) and
noncallitrichine (n = 3) NWMs yielded 21 callitrichine-specific
NSs in 12 genes (Table S4, Fig. 2, and Dataset S1) presumptively
involved in ovulatory regulation. Both sorting intolerant from
tolerant (SIFT) (30) and PolyPhen (31) identified NS changes
that likely alter protein function in three of these genes [bone
morphogenetic protein 4 (BMP4), FSTL4, WFIKKN1], whereas
SIFT alone scored a mutation in growth differentiation factor 11
(GDF11) as affecting protein function. UniProt (32) protein
annotations were used to identify protein regions based on the
orthologous human amino acid positions (Fig. 2 and Table S4).
UniProt annotation identified these noted functional alterations:
N163S in GDF9 disrupting a glycosolyation site (Fig. 2A) and
FSHR NS occurring in an extracellular topological domain that
binds FSH (33). It is particularly interesting to note that the
chr12:642862 NS in WFIKKN1 is present in all callitrichines
except C. goeldii, which is the only callitrichine species that regu-
larly produces singletons rather than twins (Fig. 2D and Table S4).
Given the phylogenetic position of C. goeldii, it is highly likely

Fig. 1. Phylogeny of NWMs along with branches in which callitrichine re-
productive phenotypes evolved. Annotated are unique traits likely critical to
reproductive success and adaptation to multiple gestations, including phyletic
dwarfing, increased ovulation of ova per cycle (manifesting as twins or higher-
order multiple litters), early periods of developmental quiescence, and a shared
chimeric placenta. Similarly depicted are single ovulations (C. goeldii), altered
gestational lengths (S. oedipus and Leontopithecus rosalia), and further di-
minutive size (Cebuella pygmaea). Genes from NWM taxa in bold were se-
quenced as part of this study. Branch length does not represent phylogenetic
distance. The number of lineage-specific NSs identified in callitrichines (Table S4
and eight GH/IGF substitutions) and NWMs (172 GH/IGF substitutions) are shown
in blue. Phylogeny based on the work of Wildman et al. (82).
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to have reverted back to singleton births from an ancestral state
that exhibited twinning. This amino acid change in WFIKKN1 is
therefore a strong candidate for a role in the origin of twinning
in callitrichines.
Likelihood ratio tests for positive selection (34) were per-

formed to identify genes positively selected in marmosets com-
pared with other primates with sequenced genomes. Among the
genes showing significant evidence of positive selection were five
genes in the growth hormone/insulin like growth factor (GH/
IGF) axis with potential effects on perinatal growth velocity and
diminutive body size: GHSR (P = 0.034), IGF2 (P = 0.00065),
IGF1R (P = 0.0014), IGFBP2 (P = 0.023), and IGFBP7 (P =
0.0499). Exons from these genes were also sequenced in other
callitrichines and noncallitrichine NWMs. The marmoset sequences
for these five genes were mapped to the squirrel monkey genome
(Saimiri boliviensis boliviensis, Broad Institute, SaiBol1.0) and the
resulting squirrel monkey sequences were aligned to the genes from
other primate assemblies. The combination of targeted sequencing
and comparison with the squirrel monkey genome allowed us to
determine lineage specificity for 139 of the 162 NSs seen in com-
parisons of the marmoset genome to other primates with 8 calli-
trichine-specific and 131 NWM-specific NSs identified (Dataset S2).
Callitrichine-specific NSs in GHSR and IGFBP7 were predicted as
possibly affecting protein function by PolyPhen (Dataset S2). SIFT
or PolyPhen analysis predicted one protein affecting NS in IGF2,
two proteins affecting NS inGHSR, and three proteins affecting NS
in IGF1R at sites of NWM-specific NS. A protein affecting NS in
IGFBP7 showed undetermined lineage specificity (Dataset S2).
Additional NWM-specific NSs were identified in other genes in the
GH/IGF axis that were not identified as undergoing positive
selection: IGF2BP3 (1), IGF2R (1), IGFALS (14), IGFBP4 (17),
IGFBP5 (2), and IGFBP6 (6) (Dataset S3).
UniProt was used to identify the protein regions in which NS

occurred. The callitrichine-specific NS in GHSR with a possible
effect on protein function occurred in a cytoplasmic topological
domain and the NS in IGFBP7 occurred in an Ig-like C2-type
domain (Dataset S2). NWM-specific NSs in IGFBP2 were pre-
sent in the IGF-binding protein (IGFBP) N-terminal and thy-
roglobulin type-1 domains. NWM-specific NSs observed in IGF2
were present in the E domain of the precursor molecule, which is
typically cleaved to produce the 7.5-kDa IGF2 protein. In IGF1R,
we observed 46 NWM-specific NSs likely to result in changes in
binding specificity (Dataset S2). Specifically, NWM-specific NSs
were present within the L1 and L2 domains of the α chain crucial
for binding insulin-like molecules (35). A striking sequence of NSs
within the Cys-rich region (CR1) essential for binding specificity
of the ligand was also observed. The callitrichine-specific NS at
chr6:8994565 occurred in the CR1 region and may have an effect
on ligand binding affinity.

Discussion
Callitrichines are characterized by three distinctive and likely
related traits (Fig. 1). The first is a reproductive biology charac-
terized by obligate multiple gestations and associated adapta-
tions in physiology, such as hematopoietic chimerism. In addi-
tion, adaptations in social organization, such as alloparenting and
suppression of reproduction in subordinate females, similarly are
observed. Second, callitrichine primates display a relatively small
adult body size that seems to be the result of miniaturization
following divergence from a larger NWM ancestor. Third, they
have taken advantage of a dietary niche (forest edge habitats) that
includes substantial insectivory and exudativory. The marmoset
genome assembly in conjunction with targeted sequencing of
ovulation- and growth-related genes in other callitrichines and
noncallitrichine NWMs has enabled us to examine the molecular
genetic basis of these traits.
The underlying biological mechanism for DZ twinning is

clearly the release and fertilization of multiple oocytes, and both
animal models and human data suggest multifactorial inheritance
(36–38). In support of this being a polygenic trait in humans,
spontaneous multiovulatory events in a single cycle leading to DZ

twins has long been noted to occur more often in specific familial
cohorts and ethnic groups, the highest incidence being in the
Central African region (39); no single genetic locus has been
identified to date (37). Similarly, we now report that the callitrichine
obligate twinning phenotype is likely a polygenic trait resulting from
the interaction of multiple genes, and we have identified calli-
trichine-specific NSs in 13 genes with a previously described role
in regulating ovulation (Table S4).
BMP15 andGDF9 are prime candidates for a role in callitrichine

twinning based on numerous studies in other species, notably sheep
breeds that frequently twin. A single callitrichine-specific NS was
identified in the signal peptide of BMP15 (Fig. 2C). In sheep, five
polymorphisms (40–42) and one deletion (43, 44) in BMP15 simi-
larly associate with the twinning phenotype (Fig. 2C). GDF9 con-
tains three callitrichine-specific NSs in the propeptide region,
including one that disrupts a glycosylation site (Fig. 2A). The pro-
peptide region is cleaved before the production of the mature
protein, but it serves a function in establishing the structure of the
mature protein (38). In human case-control cohort analysis, four
GDF9 polymorphisms, including two in the propeptide region and
a 2-bp deletion introducing a premature stop codon (aa position
433), show higher frequencies in mothers of DZ twins, and the
proportion of mothers of DZ twins carrying any variant is signifi-
cantly increased. An additional 1-bp insertion (C392-393insT) was
identified in the propeptide region of a mother of twins causing
a premature stop codon at amino acid position 143 but was not
genotyped in other individuals. In twinning sheep breeds, two SNPs
have been identified in the mature protein region (42, 45). Recently
it has been shown that heterodimers of BMP15 and GDF9 are
more biologically active than homodimers of either protein (46).
Peng et al. (46) engineered and produced purified recombinant
human and murine GDF9 and BMP15 and demonstrated both
species specificity and 1,000- to 3,000-fold increased bioactivity of
the human GDF9:BMP15 heterodimer in granulosa and cumulus
cell expansion assays. Consistent with the notion that these mol-
ecules were selected for in callitrichines, GDF9:BMP15 hetero-
dimeric preference was ∼102- to 103-fold higher in humans than
heterodimer-driven expansion in mice. This suggestion of func-
tional species-specific heterodimeric preference lends further
support to several decades of genetic observations in humans (46).
Aside from BMP15 andGDF9, two other strong candidates for

a role in callitrichine obligate twinning were identified. BMP4
(Fig. 2C) contained two NSs, one of which was identified as af-
fecting protein function. In Hu sheep, BMP4 mRNA expression
in the ovary is positively correlated with ovulation number (47).
WFIKKN1 (Fig. 2D), which has an inferred role in ovulation (48),
exhibited four NSs, more than any other ovulation-related gene
examined, including one with a likely effect on protein function.
Interestingly, the chr12:642862 NS in WFIKKN1 was not present
in Callimico, the only callitrichine that does not twin. The nucle-
otide in Callimico was the same as that in nontwinning primates,
suggesting it has reverted back to the ancestral sequence and may
be involved in the loss of obligate twinning in this species.
Our findings pertaining to the role of the GH/IGF axis in

relation to both ovulation and growth in callitrichines is sup-
ported from the following considerations. IGF is an essential
regulator of fetal and placental growth, and data from a variety
of mammalian models suggest a link between regulation of IGF1,
IGF2, and the IGF-binding proteins in ovarian folliculogenesis
and as determinants of fetal growth and later adult body size (49,
50). Marroig and Cheverud (4) previously proposed that the
miniaturization of callitrichines could be accomplished almost
entirely in utero given their strikingly different prenatal growth
pattern (51–54). This timing of the development of the placenta
and organogenesis is unusual, with the embryo being quiescent
until around day 40, such that organogenesis lags behind that
observed in other primates by about 3 wk (55). The smallest of all
primates, dwarf and mouse lemurs (Cheirogaleidae), are charac-
terized by multiple births but combined with a primitive horned
uterus. This group seems to have undergone body-size reduction
owing to reduced duration of growth phases (56). We propose that
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the distinctive combination of obligate twinning within a simplex
uterus and shared placentation created selection pressures that may
have led to reduced prenatal growth in the callitrichines. The
twinning callitrichine bidiscoid placenta is produced by trophoblasts
contributed from both conceptuses. Within a week of implantation,
the blastocyst has rapidly expanded and fused into a common
chorion. Not dissimilar to human twin–twin transfusion in mono-
chorionic gestations, extensive vascular connections develop within
each disk, forming a single exchange unit (57). However, distinct
from human monochorionic gestations, at day 61 hematopoietic
foci begin to develop within the placenta, peaking in mass at
around day 100 then declining so that few are present at delivery
around day 143. These hematopoietic foci within the chimeric
placenta are the source of hematopoietic cells for both embryos,
resulting in hemaotopoietic chimerism. The benefit of such an
early developmental lag and timing of hematopoietic foci would be
to protect against common discordant growth and placental pa-
thologies known among other primates to be associated with ges-
tating litters in a simplex uterus (58).
The variation observed in gestation lengths among the calli-

trichines is further not explained allometrically (27). Whereas
the majority of callitrichines, including Callimico, have a gesta-
tion period of around 140–145 d, with the early developmental
lag as described above, two groups, the cotton-top tamarins
(Saguinus oedipus) and the lion tamarins (Leontopithecus), de-
viate from this pattern. S. oedipus has an unusually long gestation
period of 183 d (59), and ultrasound results suggest that this
lengthening of gestation is due to a lengthening of the lag period
(55). In contrast, the largest of the tamarins, Leontopithecus,
have a significantly shorter gestation period of ∼122 d (60). The
fact that these two nonallometric changes are seen within the
group points to the possibility of interesting evolutionary change
in this trait (61).
Targeted sequencing of the positively selected genes along the

GH/IGF axis together with comparison to the squirrel monkey
genome revealed that many of the NS contributing to their iden-
tification as positively selected are shared with non-callitrichine
NWM. Only eight callitrichine specific NS were identified among
the genes, but 131 NWMNS were present (Dataset S4). This raises
the possibility that positive selection acted to globally alter growth
patterns across all NWM, and specific changes, such as the calli-
trichine specific NS GHSR and IGFBP7, fine-tuned the diversity of
sizes seen across the NWM. In support of this, 22 NS specific to
single species of NWM and 5 NS specific to subsets of NWM were
identified in GHSR, IGF2, IGF1R and IGFBP2 (Dataset S5).
Numerous IGF1R mutations are associated with both late prenatal
and early postnatal growth restriction in humans (62, 63), and
mutations of IGF1R in mice have been demonstrated to slow

embryonic growth (64). IGF2 is the primary growth factor con-
trolling placental development and growth and is also critical in
early embryonic growth (65–68). The IGFBPs are a family of
proteases that bind with high affinity to the IGFs, serving to pro-
long their half-life and modulate availability and function with
notable impacts on developmental growth and metabolism (49).
With respect to later postnatal and juvenile growth, over a dozen
mutations in the GHSR gene have been identified in humans with
short stature (69–71), and increased concentrations of ghrelin have
been reported in infants who were small for their gestational age
(72, 73).
We have incorporated our findings herein with the observa-

tions of others into a schematic representation of the evolu-
tionary ecology of the small NWMs, emphasizing the unusual but
highly adaptive aspects of callitrichine biology (Fig. 3). The di-
etary specializations shown in Fig. 3 are in addition to frugivory,
which is shared by all NWMs. Although it was originally pro-
posed that callitrichines’ diminutive size was an ancestral state
(21) that preceded twinning, integration of ecological, behav-
ioral, reproductive, and genetic characteristics of this primate
subfamily (Callitrichinae) into a positive feedback model accounts
for multiple elements within the combination of features seen in
callitrichines. Extending beyond a general evolutionary background,
our genetic evidence suggests that positive selection of genes in the
GH/IGF axis occurred at the stem of the Cebidae and Atelidae
families (and/or the common ancestor of all NWMs), which may
have laid the genomic background for callitrichine-specific non-
synonymous substitutions affecting growth. It has been proposed
that ancestral callitrichines were able to exploit the small primate
ecological niche that is filled by prosimians in Africa and Asia,
where Old World monkeys are excluded from this ecological
niche (74). Marmosets share with prosimians such as the eastern
fork-marked lemur (Phaner furcifer) some dental adaptations to
exudativory, including lower anterior dentition with short can-
ines and incisors roughly equal in length to the canines that are
somewhat similar to prosimian tooth combs (75), lending to the
notion that the development of these dietary specializations may
have coevolved with miniaturization. Additional refinement in size
among callitrichines could have been achieved by further functional
genetic substitutions and reinforced both by diet and delayed early
placental and embryonic development, resulting in the extremely
diminutive size of modern callitrichines.
If the developmental growth delay and timing of hematopoietic

foci is tied to protection of the fetuses against common pathologies
known to be associated with gestating litters in a simplex uterus,
then litter production—the driving force for the delay—would
precede developmental delay—the driving mechanism behind
smaller size (Fig. 3). This outcome raises the question of whether

Fig. 2. Callitrichine-specific amino acid changes (annotated in red) in four genes with a likely role in regulating the number of ova and hence multiple
gestations (A–D). In addition to NS substitutions in callitrichines (annotated as Callitrichine in red), polymorphisms found in both human populations (an-
notated as Human in black for stop codons and olive green for other mutations) and sheep breeds (annotated as Sheep in purple) that demonstrate
a propensity toward twinning are shown. Protein regions and domains are based on UniProt annotations. The WFIKKNA T307A mutation absent in Callimico
goeldi, the only nontwinning species, is noted in panel D.
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increased litter size might, itself, have been an incident force for
producing continually smaller monkeys. The initial ecological
move toward exploitation of insects, and later adaptations to
exudativory primarily in marmosets, in disturbed or edge habitats
may have provided additional selective advantage to individuals
capable of rapidly producing multiple offspring once they dis-
perse into newly disturbed, and thus empty, microhabitats. This
would reinforce the selective advantage of twinning over sin-
gleton births, as well as loss of lactational anovulation. In captive
marmoset populations there is a significant positive correlation
between the number of ovulations (one or two versus three or
four) and increased maternal weight when examined by logistic
regression (8). Because obligate twinning and shortened inter-
birth intervals would increase anabolic metabolic demands on
breeding females, we, like others have in the past (76, 77), view
the preadaptation for paternal care concomitant with allopar-
enting by siblings and reproductive suppression of subordinates
as highly effective. We suggest that this collective suite of traits
coevolved with twinning as the callitrichine solution to altered
maternal metabolic demands. It would logically follow that the
suppression of subordinate females would similarly impart a de-
mographic advantage of facilitating immediate increases in the
number of breeding females, as fresh edge microhabitats appear
and subsequently allow formation of new social groups. Our
findings on the genetic underpinnings of twinning and diminutive
size in callitrichines resolves the potential need for a persistent
metabolic trade-off between intergestational and interbirth inter-
vals. In sum, callitrichines are optimally able to more fully exploit
edge habitats by virtue of their encoded and imparted reproductive
adaptations, including successful gestation and rearing of multiples
(Fig. 3).
The potential applications of this work in reproductive medi-

cine are multifold. First, it reveals a well-defined set of candidate
loci to be further characterized in human populations with a higher
heritability for twinning. In an era of reproductive biology wherein
as high as 1% of infants born in the United States are conceived
using assisted reproductive technology (78), identification of those
at risk for multiple ovulatory events in a cycle is of inherent value.
Second, it opens the opportunity to explore the genetic basis of
callitrichine adaptations to reduce complications of multiple ges-
tations. Future studies into callitrichine genomic adaptations will
undoubtedly lead to unique insights of benefit to their human
counterparts.

Materials and Methods
Further details as to the genomic science and computational approaches
used can be found in Supporting Information. Briefly, we compiled a list of
63 candidate genes based on a literature search for genes implicated in
twinning phenotypes in mammals that normally have singletons or in growth
restriction phenotypes (Table S1). NSs in marmosets were identified in the
candidate genes using the 33-way eutherian mammal Enredo Pecan Ortheus
(EPO) alignments generated by Ensembl (Fig. S1). These NSs were then com-
pared with the other haplorhine primates in the EPO alignments (human,
chimpanzee, gorilla, orangutan, rhesus macaque, and tarsier) and only those
marmoset NSs conserved among all of the other haplorhines were retained.
Manual curation using the NCBI nucleotide database and ENCODE was
used to remove substitutions present in other NWMs or for which there

was conflicting evidence (Table S2). Overlapping amplicons were assembled
using Velvet (79) and the resulting contigs were mapped to the marmoset
assembly using Blat (80). The contigs that did map to sequencing target
regions were aligned, together with orthologous regions from human,
chimpanzee, gorilla, orangutan, rhesus macaque, and marmoset assemblies
based on EPO alignments using MAFFT (81).
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